Incorporating prior knowledge in support vector machines for classification: A review
نویسندگان
چکیده
For classification, support vector machines (SVMs) have recently been introduced and quickly became the state of the art. Now, the incorporation of prior knowledge into SVMs is the key element that allows to increase the performance in many applications. This paper gives a review of the current state of research regarding the incorporation of two general types of prior knowledge into SVMs for classification. The particular forms of prior knowledge considered here are presented in two main groups: class-invariance and knowledge on the data. The first one includes invariances to transformations, to permutations and in domains of input space, whereas the second one contains knowledge on unlabeled data, the imbalance of the training set or the quality of the data. The methods are then described and classified in the three categories that have been used in literature: sample methods based on the modification of the training data, kernel methods based on the modification of the kernel and optimization methods based on the modification of the problem formulation. A recent method, developed for support vector regression, considers prior knowledge on arbitrary regions of the input space. It is exposed here when applied to the classification case. A discussion is then conducted to regroup sample and optimization methods under a regularization framework.
منابع مشابه
A QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کاملA comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater
The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...
متن کاملIncorporating Prior Knowledge into Task Decomposition for Large-Scale Patent Classification
With the adoption of min-max-modular support vector machines (SVMs) to solve large-scale patent classification problems, a novel, simple method for incorporating prior knowledge into task decomposition is proposed and investigated. Two kinds of prior knowledge described in patent texts are considered: time information, and hierarchical structure information. Through experiments using the NTCIR-...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 71 شماره
صفحات -
تاریخ انتشار 2008